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Abstract

We propose a new competitive-learning neural network model for colour image segmentation. The model, which is based on the adaptive

resonance theory (ART) of Carpenter and Grossberg and on the self-organizing map (SOM) of Kohonen, overcomes the limitations of (i) the

stability–plasticity trade-offs in neural architectures that employ ART; and (ii) the lack of on-line learning property in the SOM. In order to

explore the generation of a growing feature map using ART and to motivate the main contribution, we first present a preliminary

experimental model, SOMART, based on Fuzzy ART. Then we propose the new model, SmART, that utilizes a novel lateral control of

plasticity to resolve the stability–plasticity problem. SmART has been experimentally found to perform well in RGB colour space, and is

believed to be more coherent than Fuzzy ART.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem considered in this paper is the segmentation

of colour images for which many methods have been

proposed in the literature. Amongst the non-classical

methods, the application of artificial neural networks

(ANN) is prominent. In recent years, motivated by the

remarkable characteristics of the human visual system

(HVS), researchers have applied ANNs to various problems

in pattern recognition [1]. ANNs have several advantages

over many conventional computational algorithms, among

which the most important are (i) massive parallelism, (ii)

better adaptability to different data sets, (iii) fault-tolerance

to missing, confusing and noisy data, and (iv) optimal (or

‘near optimal’) performance.

Networks for three types of classification have been

employed: supervised, unsupervised and a combination of

the two. In the segmentation of colour images, unsupervised

learning is preferred to supervised learning because the

latter requires a set of training samples, which may not
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always be available. Furthermore, adaptive neural-network

computing methods are more effective and efficient than

traditional ones. Since the focus of this paper is on the

application of competitive-learning neural networks to the

problem of colour image segmentation, we review

the relevant results in some detail below.

In unsupervised, self-organizing neural networks, the

two dominant models are the self-organizing map (SOM)

[2,3] and adaptive resonance theory (ART) [4,5], both of

which are based on competitive learning.

SOM, which was originally introduced for the visual

display of one-and two-dimensional data sets, has the same

functional ideas as many other clustering algorithms. The

SOM neural network is a topology-preserving map in which

adjacent vectors in (n are mapped to adjacent (or identical)

cells in the array, and adjacent cells in the array have similar

position vectors in (n. The purpose of the self-organization

process, as described by Kohonen [2,3], is to find values for

the position vectors such that the resultant mapping is

topology- and distribution-preserving1.
Image and Vision Computing 23 (2005) 1060–1079
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1 By a distribution-preserving mapping we mean, that for a random

vector with the probability density function, p(X), each cell has the same

probability of being the target of the mapping. Stated otherwise this means

that the relative density of position vectors in (n approximates the

probability density of p(X).
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Fig. 1. General architecture of the ART.
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Dekker [6] presented the use of SOM network for

quantization of colour graphics images. By adjusting a

quality factor, the network is shown experimentally to

produce images of much greater quality with longer running

times, or slightly better quality with shorter running times

than existing methods. In a refined version of the SOM, the

output can be used for a controlled training of the next layer

network in the manner of Lampinen and Oja [7], who

proposed a multi-layer self-organizing map, HSOM, as an

unsupervised clustering method. Analogous to multi-layer

feed-forward networks, the HSOM (i) forms arbitrarily

complex clusters, (ii) provides a natural measure for the

distance of a point from a cluster by giving appropriate

weights to all the points belonging to the cluster, and (iii)

produces clusters that match the desired classes better than

the direct SOM or the classical k-means or ISODATA

algorithms.

Traven [8] has investigated the application of a

competitive learning algorithm to statistical pattern classi-

fication using both local spectral and contextual features,

but it is a supervised learning procedure in which the image

must first be manually segmented. Ghosal and Mehrotra [9]

describe a Kohonen self-organizing feature map for

segmenting range images using local information provided

by the orthogonal Zernike moments. However, the

application of their algorithm is limited to planar and 1-D

quadratic surface patches of gray level images. Papamarkos

et al. [10] applied a tree clustering procedure to achieve

colour reduction. In each node of the tree, a principal

component analyzer and a Kohonen self-organized feature

map (SOFM) neural network define the colour classes for

each node. A limitation of this method is that the maximum

number of final colours has to be specified a priori.

Uchiyama and Arbib [11] employ competitive learning as a

tool for colour image segmentation. After demonstrating the

equivalence of vector quantization and cluster-based

techniques, they apply their algorithm to gray scale and

colour images. The final results appear to be essentially no

different from those obtained by clustering.

A hierarchical two-stage SOM network is employed in

[12] as a pattern classifier to enhance the results of

conventional single-stage SOM without a priori infor-

mation on the appropriate number of clusters to be used in

the segmented image. However, the map size for both stages

needs to be heuristically determined, and it is found to be

difficult to achieve optimally sized maps.

The ART architecture is also a self-organizing network

that allows the system to switch between a learning or

plastic state (in which the network parameters may be

modified) and a stable or fixed state for operation. Fig. 1

presents the general structure of the families of ART

models.

The ART-based network involves three groups of

neurons: an input or comparison stage, an output or

recognition stage, and a mechanism to control the degree

of similarity of patterns placed on the same cluster (a reset
mechanism). Each neuron in the input stage is connected to

all the neurons in the output stage using feedforward

weights; conversely, each neuron in the output stage is

connected to all the neurons in the input stage using

feedback weights. Control signals C1 and C2 along with a

reset signal R facilitate comparison of the inputs with a

‘vigilance pattern’ in order to determine whether a new class

pattern should be created for any given input pattern.

There are many versions of the ART model [4,5], among

which we cite ART1, ART2 [13], and Fuzzy ART [14]. The

first can stably learn to categorize binary input patterns

presented in an arbitrary order. The second, ART2,

discovers input data clusters of either analog or binary

patterns (presented in an arbitrary order) without consider-

ing their actual size. It has the ability to produce hierarchical

clustering that is insensitive to non-uniform variations in the

input data distribution [15]. The third model, Fuzzy ART,

incorporates computations from fuzzy set theory into ART1.

For a detailed operation of the ART-based networks, the

reader may refer to [15,16]. It should be noted here that

ART does not need any pre-specified number of clusters.

ART networks are designed to be both stable and plastic,

i.e. they learn a new pattern equally well at any stage of

learning. The core issue in the application of ART networks,

for instance, to colour image segmentation is the stability–

plasticity dilemma which can be described as follows. It is

desirable that the closer the network is to its converged state,

the more strongly it should resist the erasing of the

information learned earlier. On the other hand, if the

network is far from its converged state or when there are

previously unseen inputs, it should be more sensitive to the

learning of any new input pattern, although this learning
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may erase some information previously learned. In other

words, the network should be capable of plasticity in order

to learn about significant new events, yet it must also remain

stable in response to irrelevant or often repeated events. The

challenge here is to obtain stability without sacrificing

plasticity.

Since, colour image data is represented by analog real

numbers in the colour models, ART2 seems to be more

suited to colour image segmentation than ART1 because of

its analog input capability. A learning trial consists of a

single presentation of one input pattern. The input signal

continues to be sent while all the following actions to be

described are being performed. Fig. 2 shows the block

schematic of such a learning trial involving ART2.

However, there are two major problems. First, the

normalization stage of ART2 may lead to a complete loss

of any information stored in the vector length of an input

pattern. Hence it is unsuitable for colour spaces in which

vector length of their elements holds important visual cues.

In particular, segmentation in RGB using Euclidean

normalization may produce unacceptable results
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Fig. 2. A computation cycle for ART2 learning trial.
in situations where different shades of the same colour or

highlights2 are to be segmented, since these inputs will

appear similar to the network after normalization, and thus

are not differentiable.

Second, the stabilization of the network during training is

not guaranteed, since it is highly dependent on the user’s

choice of the correct parameters. Different images will have

different ranges of suitable parameters, and the user’s

judgment turns out to be crucial to the stability of the

network. This makes it difficult to implement a fully

automated algorithm. In practice, ART2 tends to exhibit

stability only under a tightly constrained range of

parameters and conditions, and is not as stable as Fuzzy

ART [16] (see below) which incorporates the design

features of the other ART models.

Schuneman and Michelis [17] use SOM and ART2

networks to form a two-layer classification system. The first

layer, a modified SOM, calculates a set of reference vectors

of the feature distribution under the preservation of

neighborhood relations. In the second layer, an ART2-

type network classifies similar and (possibly) scaled

reference vectors into the same class. The approach

highlights the issue that in some cases the recall of SOM

shows no definite boundaries between eventual clusters. If

the number of prototypes is fixed, a second layer of the

classification system will be needed. And there appears to be

no true integration of the SOM and ART networks but rather

a cascade of the two.

The remainder of the paper is organized as follows. In

Section 2, we discuss colour image segmentation with SOM

and ART-based network, and in particular, the motivation

for combining SOM and ART, as also the simulation and

evaluation of an experimental model. Section 3 presents a

novel neural network model, SmART (a combination of

Euclidean ART1 and SOM), together with simulation

studies and an evaluation and characterization of the

model for applications in colour image segmentation. The

paper ends with the conclusions and an appendix that

provides a brief description of colour spaces.
2. Colour image segmentation-incorporating SOM
in ART

Both SOM and ART neural networks, when separately

employed for colour image segmentation, are subject to

the following limitations. In the former, the size of the

map is fixed (because the number of classification

categories is not adaptive to the complexities of input

patterns). In many cases, this necessitates the creation of

the second stage of classification in order to obtain the
2 The shadings and highlights are important since they give information

on the 3-D orientation of a surface, which is critical for a computer vision

system. Also, the shadings and highlights of objects provide useful cues for

deduction of the relationships between the objects.
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1. Start with three nodes forming a triangle, 

2. New node search for nearest neighbor nb1, 

3. Search for the next nearest neighbor nb2 that is a direct neighbor of nb1,  
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Fig. 3. The Growing map algorithm.
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appropriate number of categories [17,18]. In the case of

the latter (i.e. ART networks), although the number of

classification categories is adaptive, (i) the ART2

network cannot reach the stage of absolute stable

equilibrium and, under certain external conditions, the

network can become unstable [16,19]; and (ii) the Fuzzy

ART network, which uses unidirectional learning to

prevent instability, is prone to statistical inconsistencies

during classification [19].

Therefore, in an attempt to overcome the deficiencies of

the individual systems, we develop new strategies by

incorporating SOM into (Fuzzy) ART, and call the model

SOMART. More specifically, we attempt to combine the

key principles of SOM and ART to form a neural network

that has the desirable characteristics of both, i.e. obtaining a

useful feature map, and improving performance by utilizing

lateral control of plasticity. The characteristics are

summarized below.

SOM: (i) Feature map for the visualization of abstraction.

(ii) Lateral control of plasticity.

ART: (i) Real-time (on-line) learning. (ii) Functions in a

non-stationary environment. (iii) Adaptive number of

clusters/map size. (iv) Plasticity in an unexpected environ-

ment. (v) Self-regulating hypothesis testing to globally

reorganize the energy landscape. (vi) Fast adaptive search

for best match. (vii) Rapid direct access to codes of familiar

events. (viii) Adjustable discriminative ability. (ix) Scal-

ability of the properties to arbitrarily large system

capacities.

The issues that need to be addressed in order to

accomplish this objective are the lateral control mechanisms

and the generation of topological relations between

prototypes. These are presented in Sections 2.1 and 2.2.
Fig. 4. Development of a cell structure.
2.1. Lateral control mechanisms

For the modeling of the physiological SOM process,

Kohonen [2] defined two types of lateral control:
1 The lateral activity control (WTA function), usually

called the ‘Mexican hat’ function, or On-Center-Off-

Surround contrast enhancement; and

2 The lateral plasticity control (neighborhood function),

which defines how local activity determines the learning

rate in its neighborhood. This kernel is non-negative and

may take on the Gaussian form.

We shall highlight these two types of lateral control

separately in the contexts of SOM and ART.

The WTA function is implemented in the SOM and ART

neural networks by lateral-feedback circuits, as has been

traditionally used in neural networks [2,5]. In both net-

works, the lateral feedback can be made via interneurons

(STM) in which, for stable convergence, the time constants

must be significantly smaller than those of the principal cells

(LTM) in order that the interneurons converge faster than

the principal cells. However, the two networks differ in the

way they reset their activity while responding to new inputs.

In the SOM, resetting is done automatically and locally by

slow inhibitory interneurons. This WTA circuit operates in

cycles, where each cycle can be thought to correspond to

one discrete-time phase of the SOM algorithm. Normally

the input would be changed at each new cycle. In contrast,

ART uses an attention-orienting system which consists of

complex interactions of STM and LTM to implement a

parallel control of all neurons of the network. The system

enables ART to code adaptively in response to a series of

inputs without the need to present each of them at each new

cycle.

In the lateral plasticity control of SOM, the ‘winner’

directly modulates the synaptic plasticity in the lateral

direction. ART networks have no explicit means of lateral



Plate 1. (a) Original ‘geometric data’ image and, (b) its topological map in geometric RGB colour space with six vertices representing the initial cluster centers

for Gaussian distribution data.
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plasticity control but implement plasticity in another form

without direct lateral control of the ‘neighborhood’ in the F2

layer, i.e. the ability to create new categories for unfamiliar

patterns. This provides for the possibility of having a lateral

plasticity control scheme for ART, and also ensures that

there is no conflict of lateral control mechanisms.
2.2. SOMART-generation of lateral connections

using Fuzzy ART

To incorporate a topological map in ART, we build an

experimental ART-based model to generate a growing

topological map and call the model SOMART. The important

criterion is that map lattices should be relevant to the global

energy landscape. The lattice vertices should preferably be

centroidal; and non-centroid vertices can be recomputed to

obtain centroidal vertices. For a growing map to form coherent
Plate 3. (a) Original ‘objects’ image; and (b) its representation in geometric

RGB colour space.

Plate 2. SOMART topological map generated using ‘geometric data’ image

with Gaussian noise of standard deviation 0.001 added: (a) topological map

in geometric RGB colour space with six vertices; and (b) its ‘unfolded’ 2D

topological map.
topological relations, newly committed prototypes should be

positioned within the pattern space they represent and not

shifted excessively. Fuzzy ART with fast-learn slow-recode

option is chosen over ART2 for the sake of simplicity and

speed. Fuzzy ART with monotonically decreasing top-down

and bottom-up weights has the limitation that the formed

lattice vertices will not be centroidal but they should at least be

topologically coherent [20].

ART starts with a minimum number of prototypes and

adaptively increases the number of prototypes to represent

the inputs. In contrast with the method proposed by Fritzke

[20,21] to construct two-dimensional cell structures that are

specially adapted to the underlying distribution, the Fuzzy

ART algorithm, in our model, is used to determine when and

where to insert cells in the current structure. A new cell is
Plate 5. SOMART segmentation results on ‘continuous spanning data’

image using vigilance parameter rZ0.70 with 13 clusters formed (bZ0.5,

aZ0.1): (a) topological map in geometric RGB colour space with 13

vertices; and (b) the segmented image.

Plate 4. SOMART segmentation results on ‘objects’ image using vigilance

parameter rZ0.70 with 23 clusters formed (bZ0.5, aZ0.1): (a) segmented

image; and (b) its topological map in geometric RGB colour space with 23

vertices.
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always inserted in where the unmatched input pattern lies.

This is achieved by using fast-learn in Fuzzy ART for the

new cell. In conjunction with the Weber Law that the

existing prototypes conserve weight values whenever

possible in the conservative limit [14], the integrity of the

map topographical relationships should be preserved.

The SOMART growing map algorithm and its illus-

tration are shown in Figs. 3 and 4, respectively. With

complement coding, only prototypes of the original input set
Fig. 7. The SmAR
are regarded as nodes in the map. The global ordering of the

feature map in SOMART is achieved by the self-regulating

hypothesis testing of Fuzzy ART.

Since ART is designed to function in a real-time

environment, there is no differentiation between the training

and classification phases. The algorithm gives classification

results simultaneously with learning. Hence, in our

simulations, the classification mode is not applied. We

derive and display the results in real-time as the network is

being trained without changing any of its parameters until

the learning process has converged.
2.3. Experimental results with SOMART

We analyze and evaluate the performance of the SOMART

algorithm by using a 3D visual simulator. Unlike SOM, the

SOMART topological map needs no initialization to form the

global map. Global ordering is ensured by the underlying

Fuzzy ART algorithm. The original images used before the

addition of Gaussian noise and its initial cluster centers in

geometric colour space are shown in Plate 1. Added Gaussian

noise (standard deviation of 0.001) makes the cluster centers

more visible. The geometric data set consists of 64,000 (320!
200) patterns generated in each of six predefined kernels.

Simulations show that a vigilance parameter of 0.7 is able to

separate the input vectors into six clusters.

Plate 2(a) shows a topological map generated using the

above image as inputs to SOMART with a learning rate of

0.5. Using topological relations, we ‘unfold’ the map to

illustrate its 2D property (Plate 2(b)). It is observed that the

SOMART algorithm correctly forms the 2D topological
T algorithm.



Table 1

Labeling for the different parameter ranges used in SmART

Label Plasticity parameter Learning rate

Low 0.01–0.30 0.001–0.010

Medium 0.31–0.80 0.011–0.100

High 0.81–1.00 0.101–1.000
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map. However, when a more complex image such as the

‘Objects’ image shown in Plate 3 is used, the generated map

(Plate 4(b)) forms too many irrelevant links.

It is observed that as some prototype vectors move

towards the origin, other prototype vectors can take on

the values that these prototypes previously had. From this

characteristic, we infer that the overlapping of the

prototypes’ response regions inherent in Fuzzy ART

[14] causes this phenomenon. Thus relevant neighborhood

links that are formed initially may be rendered irrelevant

after some learning cycles but must be kept intact to

preserve the property of the 2D map. This adds undue

complexity to the topological map. Moreover, the

prototype vectors are not representative of the cluster-

means as shown in Plate 5(a), and if these cluster-means

are needed, extra computational effort will be necessary

to calculate them.

The statistical inconsistency of Fuzzy ART and its non-

centroid clusters affect the coherence of the topological map

in SOMART. With noisy data, the prototypes, being

minima, tend to degenerate to zero, and new clusters must

be continually created, thus resulting in category prolifer-

ation which Carpenter et al. [14] deal with by complement

coding in which each input set is doubled in length. Fuzzy

ART employs hyperbox clustering approach, thereby

leading to the segmentation result shown in Plate 5(b).

To summarize, our objectives for incorporating SOM

into ART have only been partially fulfilled. Although a

growing 2D topological map using Fuzzy ART has been

observed, we have not utilized the topological relations (in

the bid to improve ART-based network performance) due to

their inconsistent characteristics.
Plate 6. Gaussian data set (standard deviation 0.001) in geometric RGB

colour space.
3. SmART– ART using euclidean metric

The drawbacks of Fuzzy ART and ART2 can be avoided

if (i) the basic ART1 architecture can be retained and yet

remain stable for analog inputs; and (ii) the Euclidean

distance metric is employed for the calculations of nearest

prototypes and thresholds, thereby reducing the possibility

of categories overlapping each other.

Further, in an attempt to resolve the two issues of the

plasticity–stability dilemma and the lateral control of

plasticity, we propose the integration of SOM principles

with ART. This leads us to our model, SmART, which

utilizes a novel form of lateral plasticity control.
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Fig. 8. SmART segmentation results on ‘geometric data’ image with

Gaussian noise of standard deviation 0.001 added: (a) No. of clusters

formed vs. different learning rates; (b) No. of epochs needed for

convergence vs. different learning rates; (c) MSE vs. different learning

rates. Results are shown at two different plasticity values of 0.1 and 1.0.

Vigilance is set at 0.36 and standard stopping criterion at first zero ART

reset is applied.



Plate 7. Gaussian data set (standard deviation 0.002) in geometric RGB

colour space.

Table 2

Suggested values of parameters for SmART with specified vigilance on

images of varying complexity

Colour cluster feature Plasticity parameter Learning rate

Well-separable Minimal effect Minimal effect

Partially-separable High Low

Non-separable Medium Low
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We overcome the problem of instability in ART1, when

Euclidean distance is used (see [22] for definitions of

stability and instability), by utilizing the topological map

developed for SOMART, and implementing the lateral

control of plasticity in Euclidean ART1, without resorting to

the highly elaborate approach found in ART2.
3.1. Lateral control of plasticity (plasticity parameter)

Instead of using the topological map to implement lateral

plasticity control (neighborhood function) as in SOM, the

topological relations between nodes are used as an adaptive

learning inhibitory function on the prototype vectors. The

difference between the lateral control of plasticity in SOM

and SmART is illustrated in Fig. 5. This approach prevents

overmatching or the overwriting of the response region of

WTA onto the regions of its topological neighbors, i.e. we

preserve previously stored information when a new pattern

is being learned. The function of the topological map in

SmART, besides providing a feature map, is to enable the

lateral control of plasticity in a manner different from that

found in SOM. Most important of all, the condition on ART

that only the WTA unit learns during resonance is not

violated here.

We model the plasticity–stability dilemma with a single

plasticity parameter that governs the lateral control of

plasticity of the network. The plasticity parameter utilizes

the topological map to provide the distance measures
Plate 8. Gaussian data set (standard deviation 0.003) in geometric RGB

colour space.
between neighboring prototypes at the classification layer of

ART. If f is the degree of freedom for a node, G the plasticity

parameter and d the Euclidean distance of the node’s

shortest direct neighborhood link, then fZd!d.

The degree of freedom for each and every node,

computed from the plasticity parameter and the distance

from their shortest direct neighborhood, is incorporated into

the topological map to prevent oscillations, proliferation of

prototypes, and, implicitly, the creation of unqualified

topological relations between prototypes. By calculating

the maximum allowable degree of freedom for each epoch at

a specified rate of change, we make the simplifying

assumption that a prototype will be bounded by the degree

of freedom for the epoch. Thus prototypes are held in a mesh

that can evolve over time but avoids spurious changes

(Fig. 6).
3.2. SmART algorithm

We implement the SmART algorithm (Fig. 7) by

modifying the visual simulator developed for SOMART

(Section 2.2). SmART replaces Fuzzy ART as the

underlying algorithm to generate a topological map. We

adopt Moore’s method of incorporating Euclidean

distance into ART1 [22] in our SmART algorithm in

which the plasticity parameter determines the strength of

lateral plasticity control. For a fixed pattern set, the

degrees of freedom for all prototypes are computed at the

beginning of every epoch and remain fixed throughout

that epoch unless new prototypes are created. The degree

of freedom for the first prototype must always be zero as

there is no shortest direct neighborhood link, i.e. the

distance is zero.

In order to evaluate stability in the SmART algorithm,

we need to devise a suitable stopping criterion. Two

measures may be used to judge the state of convergence of

the network. One is to examine the weight changes of the

prototype vectors, but, in view of the plasticity property of

SmART, this cannot be done. The other method is to use the

number of ART resets. The number of resets correlates

closely with the state of convergence of an ART algorithm.

A novel input will cause a reset whenever a winning

prototype vector fails to encode it. Thus the number of resets

is indicative of the network convergence on a pattern set. By

making use of this property, we choose a stopping criterion

that is associated with the number of resets for each training

epoch. The stopping criterion that we adopt for SmART is



Plate 9. Snapshots of topological map in geometric RGB colour space of SmART training with high plasticity parameter on ‘continuous spanning data’ image

at various training epochs (rZ0.3, bZ0.001, dZ1.0): (a) at 10th training epochs with 31 vertices; (b) at 20th training epochs with 61 vertices; (c) at 30th

training epochs.
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simply that the number of ART-resets hits zero for a training

epoch.
No. of clusters/epochs vs 
Plasticity parameter 

40

60

80

100

120

 c
lu

st
er

s/
ep

oc
hs

Clusters

Epochs

(a)
3.3. Results and comparisons

Besides vigilance and learning parameters, SmART

employs a plasticity parameter which is defined by

heuristics rather than in any statistically meaningful way.

The SmART algorithm is tested on a variety of images:

Gaussian distribution data, continuous-spanning data,

‘Girl’, ‘Lena’, ‘Sails’, ‘Objects’ and ‘Fruits’. The first two

synthetic images are used to evaluate the SmART

algorithm. The continuous-spanning image is utilized to

underscore the algorithm stability and to make a brief

comparison with the SOMART algorithm. The natural

images are used to analyze and characterize SmART

clustering performance.

Results are presented where appropriate for each image

data set as a segmented image, a graphical 2D topological

map in 3D geometric colour space and in terms of a

distortion (quantization, reconstruction) error measure,

identified as the mean square error (MSE). See Table 1

for the heuristic labeling of the range of parameters.
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Fig. 9. SmART segmentation results on ‘continuous spanning data’ image:

(a) Number of clusters/epochs vs. plasticity parameter; (b) MSE vs.

plasticity parameter. Vigilance is set to 0.3 and low learning rate (0.001) is

applied.
3.3.1. Gaussian distribution data

Fig. 13 shows the original image used for the Gaussian

distribution data and the initial cluster centers in geometric

colour space. The geometric data set consists of 64,000

(320!200) patterns generated in each of six predefined

kernels. Simulations show that a vigilance parameter of 0.36

separates the input vectors into six clusters.

3.3.1.1. Gaussian noise with standard deviation of 0.001

added (well-separable). Plate 6 shows the same image

with added Gaussian noise of standard deviation 0.001.

The clusters are well-separated with the location of kernels

being clearly visible. The simulation results of Fig. 8 show

that, when the input vectors are well separated, different

plasticity parameters and learning rates have minimal effect

on clustering results.

3.3.1.2. Gaussian noise with standard deviation of 0.002

added (partially-separable). Plate 7 shows a Gaussian
distribution image with a standard deviation of 0.002. The

clusters are still separable with the location of kernels

remaining discernible. Generally, as input vector variance

becomes larger but still remains separable, more prototype

vectors are formed. It is also observed that MSE increases

when compared with the previous, well separated case.

The reduction of the plasticity parameter to 0.1 has the

effect of moderating the different learning rate to achieve

the results at a low learning rate. As observed, the three

aspects of performance are quite consistent at different

learning rates. At a high learning rate, the use of high

plasticity is observed to have an adverse effect because more

prototypes than necessary are created. At high plasticity, as

learning rate is increased, more prototype vectors are

formed and the number of training epochs increases. Due to



Plate 10. SmART segmentation results on ‘continuous spanning data’ image at various plasticity parameters shown as topological maps in geometric RGB

colour space on the left and segmented images on the right (rZ0.3, bZ0.001). The respective plasticity parameters are: (a) 1.0 with 103 vertices/clusters

(termination at 35th training epoch); (b) 0.1 with 10 vertices/clusters (convergence after two training epochs); and (c) 0.01 with 12 vertices/clusters

(convergence after two training epochs).

Table 3

Suggested values of parameters for SmART with specified vigilance

on image of specified complexity

Colour cluster feature Plasticity parameter Learning rate

Continuous-spanning Low Low

N.C. Yeo et al. / Image and Vision Computing 23 (2005) 1060–1079 1069
the high plasticity of these prototypes, they learn the most

recent inputs very effectively, and thus frequently have the

tendency to drift away from the centroids of the clusters

they represent. Since, these prototypes are not representa-

tive of the cluster means, new inputs already belonging to

these clusters are more likely to trigger the creation of new

prototypes. In terms of MSE, the clustering performance

deteriorated in spite of the increase in the number of

prototypes.

We suggest the use of a low learning rate for most static

applications. Since, newly committed prototypes fully

converge to equilibrium values, only incremental adjust-

ments are needed to adapt or represent clusters better as

more inputs are presented. Hence the suggested approach is

to use a low learning rate and high plasticity for input

patterns of similar nature.

3.3.1.3. Gaussian noise with standard deviation of 0.003

added (non-separable). Plate 8 shows a Gaussian distri-

bution image with a standard deviation of 0.003. The

clusters overlap one another and are not clearly separable

with the locations of the kernels somewhat Fuzzy. Most of

the observations in the previous subsection remain valid for

this non-separable case. Simulation results show that MSE

is reduced across the board with fewer prototype vectors

being formed when a medium plasticity parameter is used.

Again, a low learning rate provides the best clustering

performance that validates our previous proposal.

Hence the suggested approach here is to use a low

learning rate with medium plasticity for complex non-

separable input patterns of similar nature, i.e. images with
significant colour variation. A summary of the results on

Gaussian distribution data is presented Table 2.
3.3.2. Continuous-spanning data

To evaluate stability for different plasticity parameters,

we choose an image that can test the stability boundary of

SmART algorithm. The continuous-spanning data of Plate 9

demonstrates that the proliferation of SmART prototype

vectors can occur when high values of plasticity are used.

The input vectors are generated in such a way that each

prototype vector can be brought arbitrarily close to one

another, thereby defeating the purpose of having a vigilance

parameter. However, it should be noted that the algorithm

will always converge fully with plasticity value of less than

1.0 for any input patterns.

To overcome this problem, we gradually reduce the

plasticity parameter as shown in Fig. 9(a). Once

the plasticity parameter is reduced to less than 0.8, the

proliferation of prototype vectors is observed to be

contained. As implicitly shown in Fig. 9(b) for images

with large portions of continuously varying colour, a

lower plasticity parameter is more likely to achieve better

results. The feature of the lateral plasticity parameter to

effectively control plasticity-stability balance is demon-

strated here.



Plate 11. Natural test images. (a) ‘Girl’; (b) ‘Lena’; (c) ‘Sails’.
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Next, we assess properties of the segmented images

shown in Plate 10 when different plasticity parameters are

applied. The SmART algorithm coherently segments the

image into different partitions of dominant colours. When a

lower plasticity value is employed, the order of presentation

affects the classification results to a smaller extent. It can be

seen that the region boundaries are more rigidly defined, and

there is almost no overlapping of response regions. The use

of the plasticity parameter not only ensures stability but also

makes SmART more robust to order of presentation on

classification. The range of values suggested for SmART

plasticity parameter and learning rate are summarized in

Table 3.

The advantages of SmART over SOMART are illus-

trated by Plate 5 which shows a result of the continuous-

spanning image segmented using SOMART. When

compared with the result obtained with SmART, its

drawbacks become apparent. Although a stable equilibrium

is attained, the results are obviously not as coherent as those

of SmART, and its generated feature map is also less

intuitive to understand.
3.3.3. Natural images

Until now, our simulations have been done using only

synthetic images. The purpose of this section is to

characterize the SmART algorithm using natural images.
(a) ‘Girl’, ‘Lena’ and ‘Sails’ images

We apply heuristics using the ‘Girl’, ‘Lena’ and ‘Sails’

images (Plate 11) to suggest a valid working range for

SmART parameters. To this end, we set the maximum value

of 1.0 for both plasticity parameter and learning rate to

derive the boundary characteristic of the vigilance threshold

for all the images, as shown in Fig. 10. For images ‘Girl’ and

‘Lena’, a vigilance threshold of 0.3 is observed to strike a

good compromise between the number of clusters, number

of training epochs, computation time and MSE. Using the

same criteria, a vigilance threshold of 0.4 is selected for the

‘Sails’ image. With these values of vigilance, we proceed to

study the effects that plasticity parameter and learning rate

have on MSE and the number of clusters formed. The results

are shown in Fig. 11. It is seen for all three images that MSE

can be greatly improved in tandem with a corresponding

drop in the number of representative clusters by an

appropriate tuning of the plasticity parameter and learning

rate. With the values of plasticity at around 0.8 or lower,

SmART displays markedly more consistency in that an

increase in number of clusters corresponds to a decrease in

MSE across a broad range of learning rates. It can therefore

be inferred from the graphs of Fig. 11 that valid plasticity

values for this image range from 0 to 0.8, which is consistent

with earlier observations. Plate 12–14 show, respectively,

the segmented results of the ‘Girl’, ‘Lena’ and ‘Sails’
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Fig. 10. SmART segmentation results illustrated with plots of MSE vs. Vigilance on left and number of clusters/epochs/computation time vs. vigilance (right)

on right: (a) on ‘girl’ image; (b) on ‘Lena’ image; (c) on ‘sails’ image. Learning rate and plasticity parameter are all set to 1 (upper bound).
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images at various learning rates with plasticity value fixed at

0.8 and vigilance threshold at 0.3.

For the sake of simplicity, the range of values suggested

for the SmART plasticity parameter and learning rate is

summarized in Table 4. The use of the plasticity parameter

allows high learning rates to be utilized without risking

instability. These simulations show that when different

plasticity parameters are selected for plasticity-stability

reasons, the demonstrated utility of Euclidean ART is

retained.

The results also suggest that lower values of the

learning rate tend to give better segmentation results in

terms of MSE for a given vigilance threshold and

plasticity parameter. Hence to generalize, good results

are obtained with higher plasticity parameter values and
low learning rates. It is observed that with the lateral

control of plasticity, instability can be effectively reduced

while maintaining high plasticity. However, it appears

that a non-stationary environment is needed (which is not

the subject of this paper) to demonstrate the full potential

of the plasticity parameter.

(b) ‘Objects’ and ‘fruits’ images

We evaluate and compare SmART performance on two

images of real objects under artificial settings. We first study

the effects that plasticity parameter have on the number of

clusters formed at different vigilance parameters with the

illustration of 2D topological maps generated in 3D

geometric colour space. The SmART-segmented images

are then evaluated by visual inspection to gauge their

subjective segmentation quality.
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Fig. 11. SmART segmentation results illustrated with 3D plots of MSE vs. Plasticity vs. log(learning rate) on left and number of clusters vs. Plasticity vs.

Log(learning rate) on right: (a) on ‘girl’ image; (b) on ‘Lena’ image; (c) on ‘sails’ image. Vigilance parameter is set to 0.3 except for (c) which is set to 0.4.
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The ‘Objects’ image is of moderate complexity consisting

of six dominant colours. We observe that plasticity has very

little influence on the segmentation results (Fig. 12(a)). On the

other hand, the ‘Fruits’ image is complex with 13 dominant

colours and a total of 58,930 colours. With higher plasticity,

SmART adaptively forms an appropriate number of clusters

(Fig. 12(b)). For the more complex image, more clusters are

formed at higher plasticity.

By visual inspection of the segmented ‘Objects’ image,

the best compromise between segmentation fidelity and the

smallest number of clusters is found to be at the vigilance

value of 0.25 (Plate 15). Using this vigilance value at
different plasticity parameters on the same ‘Objects’ image

(Plate 16), we find it hard to discern any meaningful

differences between the segmented images.

We apply the same criteria to the ‘Fruits’ image to obtain

the segmented image shown in Plate 17 at the vigilance

value of 0.3. As before, different plasticity parameters are

applied to examine their effects on the segmented images

(Plate 18). It is observed that higher plasticity parameter

value gives the nearest segmented representation of

the original image with more clusters being formed.

The results show that higher plasticity enables SmART to

be more adaptive to the complexities of the input vectors.



Plate 12. SmART segmentation results on ‘girl’ image at various learning rate shown as segmented images (rZ0.3, dZ0.8): (a) at learning rate of 0.1 with 67

clusters/vertices (MSEZ227.92); (b) at learning rate of 0.01 with 26 clusters/vertices (MSEZ326.96); (c) at learning rate of 0.001 with 20 clusters/vertices

(MSEZ419.78).

Plate 13. SmART segmentation results on ‘Lena’ image at various learning rate shown as segmented images (rZ0.3, dZ0.5): (a) at learning rate of 0.1 with 12

clusters/vertices (MSEZ562.29); (b) at learning rate of 0.01 with 19 clusters/vertices (MSEZ259.11); (c) at learning rate of 0.001 with 17 clusters/vertices

(MSEZ256.97).
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Plate 14. SmART segmentation results on ‘sails’ image at various learning rate shown as segmented images (rZ0.4, dZ1.0): (a) at learning rate of 0.1 with 30

clusters/vertices (MSEZ771.17); (b) at learning rate of 0.01 with 23 clusters/vertices (MSEZ564.36); (c) at learning rate of 0.001 with 18 clusters/vertices

(MSEZ661.98).
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The range of values suggested for the SmART plasticity

parameter and learning rate is summarized in Table 5.

Table 4

Suggested values of parameters for SmART with specified vigilance on

images of varying complexity

Image colour feature Plasticity parameter Learning rate

Complex natural

images

Medium Low
3.4. Comparison with SOMART and other architectures

In comparison with SOMART (Fuzzy ART), SmART

classifications are statistically more coherent with prototype

vectors representing the cluster means. Fewer prototypes are
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Fig. 12. SmART training showing the number of clusters vs. vigilance

parameter at different plasticity parameter settings: (a) on ‘object’ image,

(b) on ‘fruits’ image. Low learning rate (0.001) is applied.

Plate 15. SmART segmentation results on ‘objects’ image at various vigilance p

geometric RGB colour space on the right (bZ0.001, dZ0.1). The respective vi

clusters/vertices; and (c) 0.3 with 10 clusters/vertices.
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needed to represent the input space since the response

regions of the prototypes of SmART do not overlap one

another. Therefore, SmART generates a simpler and more

coherent 2D feature map that is potentially useful for

visualization and abstraction purposes.

The lateral control of plasticity is implemented in

SmART by utilizing the topological relationships between

prototypes from the feature map, and this introduces a

new plasticity parameter. Although the plasticity par-

ameter displaces the choice parameter in SOMART, the

functions that the parameters perform are entirely

different. Both SmART and SOMART have three

parameters while ART2 has more than eight parameters.

In order to understand more intuitively the influence of

the different SmART parameters, we treat (i) the

vigilance parameter as defining a prototype response

region, (ii) the learning rate as controlling the prototype’s

rate of change, and (iii) the plasticity parameter as

imposing a bound on this rate of change adaptively,

depending on its distance to neighboring prototypes. In

other words, vigilance provides the discriminative

adjustment control, learning rate determines the global

adaptivity of prototypes and, with overriding priority over

learning rate, the plasticity parameter restricts the

adaptivity of prototypes locally, when necessary, to

ensure stability. By comparison, in an ART2 network,

vigilance and learning rate together with many other

parameters are closely coupled together in determining

stability.
arameters shown as segmented images on the left and topological maps in

gilance parameters are: (a) 0.2 with 23 clusters/vertices; (b) 0.25 with 18



Plate 17. SmART segmentation results on ‘fruits’ image at various vigilance parameters shown as segmented images on the left and topological maps in

geometric RGB colour space on the right (bZ0.001, dZ0.1): (a) Original ‘fruits’ image and its input data set in geometric RGB colour space. The respective

vigilance parameters are: (b) 0.25 with 36 clusters/vertices; (c) 0.30 with 26 clusters/vertices; and (d) 0.35 with 17 clusters/vertices.

Plate 16. SmART segmentation results on ‘objects’ image at various plasticity parameters shown as segmented images (rZ0.25, bZ0.001). The respective

plasticity parameters are: (a) 1.0 with 17 clusters; (b) 0.1 with 18 clusters; and (c) 0.01 with 18 clusters.
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Table 5

Suggested values of parameters for SmART with specified vigilance on

images of varying complexity

Image colour feature Plasticity parameter Learning rate

Simple-‘Objects’

image

Minimal effect Low

Medium-‘Fruits’

image

High Low

Plate 18. SmART segmentation results on ‘fruits’ image at various plasticity parameters shown as segmented images (rZ0.3, bZ0.001). The respective

plasticity parameters are: (a) 1.0 with 28 clusters; (b) 0.1 with 26 clusters; and (c) 0.01 with 20 clusters.
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The convergence speed of SmART algorithm compares

well with that of Fuzzy ART, which is in turn faster than

clustering algorithms like SOM and ART2 in related colour

image applications. Since, Fuzzy ART and SmART are both

based upon ART1 architecture, their convergence speeds

are mostly comparable except for the extra computations

required for the lateral control of plasticity in SmART. It

should be noted that in our implementation, the computation

to determine the degree of freedom for all nodes, barring

newly committed nodes and their immediate neighboring

nodes, is performed only once at the end of each training

epoch. This approach enhances the computational efficiency

of the SmART algorithm.

The results obtained by applying SmART and ART2

to the ‘Girl’ image are shown in Table 6. ART2

parameters are adjusted by trial and error until the

number of clusters approximates SmART results with the

MSE minimized. ART2-training stops when the number

of ART2 node-resets drops to less than 5% of the initial

number of resets at the start of training. It can be seen

that SmART provides a much better set of MSE results

than ART2 at any learning rate with an almost equivalent

number of clusters. Computational time is also compar-

able with ART2 without taking into consideration the

advantage of a less stringent stopping criteria adopted

for ART2.

The use of the plasticity parameter not only ensures

stability but also enables SmART to be robust to different

orders of presentation for classification. The plasticity

parameter indirectly regulates the two types of plasticity:

learning rate and the commitment of new nodes. It is

observed that the plasticity parameter in SmART is highly

effective in ensuring stability while maintaining the superior

clustering performance of Euclidean ART over both Fuzzy

ART and ART2.
4. Conclusions

We have proposed a new neural architecture, SmART,

which is based on ART1 using a Euclidean distance metric

and the lateral control of plasticity, and have applied it to the

problem of colour image segmentation. By utilizing the

topological map developed using SOMART (which is a

combination of SOM and ART), we have developed a novel

method to implement the lateral control of plasticity in

SmART and introduced a plasticity parameter to deal with

the stability–plasticity problem.

Some salient features of SmART are: (i) minimal pre-

processing of input; (ii) greater speed, stability and

flexibility due to the fact that the stability–plasticity balance

of the network is highly de-coupled from the all other

parameters; and (iii) improved statistical coherence in

comparison with Fuzzy ART.

It is believed that (i) SmART has extended the limitation

imposed by the stability–plasticity tradeoffs in ART-type

architecture; and (ii) the proposed approach of implement-

ing the lateral plasticity control has elegantly solved the

major stability problem associated with the use of bi-

directional (Euclidean) learning for ART1-type algorithm.

Further, SmART learning enables a wide range of plasticity

while still retaining good stability. This is made possible by

the novel and unique implementation of lateral control of



Table 6

Comparison of SmART and ART2 in the segmentation of ‘Girl’ image

Learning rate b SmART ART2

No. of clusters Epochs Time (s) MSE No. of clusters Epochs Time (s) MSE

0.001 20 4 2 419.78 14 3 2 4960.59

0.005 23 6 2 355.81 22 4 3 2963.95

0.01 26 11 3 326.96 31 10 8 2624.17

0.05 42 22 7 280.61 28 8 9 2729.62

0.1 67 57 26 227.92 26 4 4 2768.46

0.5 60 18 8 581.21 – – – –

1 80 28 16 569.23 – – – –

SmART is set at a vigilance of 0.3 and plasticity of 0.8; ART2 is set at a vigilance of 0.995 and noise suppression of 0.4. At the learning rate of 0.5 and above,

ART2 failed to meet the stopping criteria.
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plasticity in which the adaptivity of each individual

prototype is governed by its own internal rules in order to

ensure the overall stability of the map. Experimental

simulations have verified the theoretical properties of

SmART.

The SmART network has also been characterized for use

in colour image segmentation applications in which the

commitment of the new nodes is indirectly regulated by the

plasticity parameter in a manner that is coherent with

the complexities of an image. SmART has been found to

perform well in RGB colour space.

Some possible improvements over SmART to be explored

are: (i) generalization of the topological map to arbitrary

dimension as suggested by Fritzke [21] for the SOM model;

(ii) use of different inhibitory functions (possibly higher-order

functions) for the degree of freedom; (iii) use of multiple

neighborhood links (instead of just the shortest link); and (iv)

use of the angles subtended between, for instance, pairs of

links in order to compute their degrees of freedom.
Appendix A. Appendix A-colour spaces

As is well known, the human visual system (HVS)

segments a colour image effortlessly. It can discern

thousands of colour shades and intensities, compared to

about 16 shades of gray. Owing to the structure of the

human eye, all colours are seen as variable combinations of

the three so-called primary colours, red (R), green (G) and

blue (B). A colour model specifies colours quantitatively by

employing a 3D coordinate system and a subspace within

that system where each colour is represented by a single

point. Some of the more commonly used colour models in

image processing are RGB, YIQ, HSI, Lab and Luv.

In the RGB model, each colour appears as its primary

spectral components of red, green and blue. This model is

based on the Cartesian coordinate system, and is commonly

used for representing digital colour images. However,

coordinate systems related to the HVS perceptual attributes

of luminance, hue, and saturation are often more suitable for

processing colour images.
It is desirable that the perceptual difference of colours is

proportional to the distance between them in an appropriate

colour space. Although the RGB model is good for the

acquisition or display of colour information, it is not helpful

in explaining the human perception of colours. It has been

found that (i) if we employ the colour spaces Lab and Luv,

colour differences can be determined by the Euclidean

distance measure]; and (ii) colour features in the Luv space

produce more readily separable clusters of pixels.

For the segmentaiton of colour images, Luv space, which

has the property of an approximately uniform perceptual

space, is preferred because it is associated with a chromaticity

diagram in which an additive mixture of two arbitrary colours

lies on the straight line joining the two colours. The

employment of a perceptually uniform colour space may be

advantageous if we try to mimic human performance.
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